If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-58=0
a = 2; b = 16; c = -58;
Δ = b2-4ac
Δ = 162-4·2·(-58)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-12\sqrt{5}}{2*2}=\frac{-16-12\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+12\sqrt{5}}{2*2}=\frac{-16+12\sqrt{5}}{4} $
| -5/8c=-10 | | 4+2b=2+2b | | -3x+18=-6-21 | | 4+14=-3(8x-6) | | z/5+9=35 | | -44+10x=7x+22 | | -2(1-4n)=-3+7n | | )4(k+3)=4 | | 2d=3d-9 | | x2+5=24 | | 9x+1+-7x=-20 | | w/4+38=44 | | 2x^2+16x-58=O | | 2(4y-9)=9 | | 3x-x-5=5 | | z/5+9=30 | | 7(n+4=12 | | (1/2)x-3/2=7/4 | | 10p+1=10p-6 | | (3m-3)÷5=(2m-1)÷2 | | (3r-6)+(r-4)=90 | | 4x+1=- | | 13t=-351 | | -5(x+2)+5(x-5)=0 | | 13x+14=-142 | | 5(2x+5)=-25+10 | | 3(k-13)-1=2 | | a/a-4=0 | | 2(1+x)+x=3 | | 54p=2(3p+12) | | -7+10u=8+7u | | c/4+17=19 |